Probabilistic K-nearest neighbor classifier for detection of malware in android mobile
نویسندگان
چکیده
منابع مشابه
Use of K-Nearest Neighbor classifier for intrusion detection
A new approach, based on the k-Nearest Neighbor (kNN) classifier, is used to classify program behavior as normal or intrusive. Program behavior, in turn, is represented by frequencies of system calls. Each system call is treated as a word and the collection of system calls over each program execution as a document. These documents are then classified using kNN classifier, a popular method in te...
متن کاملProbabilistic characterization of nearest neighbor classifier
The k-Nearest Neighbor classification algorithm (kNN) is one of the most simple yet effective classification algorithms in use. It finds major applications in text categorization, outlier detection, handwritten character recognition, fraud detection and in other related areas. Though sound theoretical results exist regarding convergence of the Generalization Error (GE) of this algorithm to Baye...
متن کاملa lattice based nearest neighbor classifier for anomaly intrusion detection
as networking and communication technology becomes more widespread, thequantity and impact of system attackers have been increased rapidly. themethodology of intrusion detection (ids) is generally classified into two broadcategories according to the detection approaches: misuse detection and anomalydetection. in misuse detection approach, abnormal system behavior is defined atfirst, and then an...
متن کاملA fall detection system using k-nearest neighbor classifier
The main purpose of this paper is to use off-the-shelf devices to develop a fall detection system. In human body identification, human body silhouette is adopted to improve privacy protection, and vertical projection histograms of the silhouette image and statistical scheme are used to reduce the effect of human body upper limb activities. The kNN classification algorithm is used to classify th...
متن کاملEvidential Editing K-Nearest Neighbor Classifier
One of the difficulties that arises when using the K-nearest neighbor rule is that each of the labeled training samples is given equal importance in deciding the class of the query pattern to be classified, regardless of their typicality. In this paper, the theory of belief functions is introduced into the K-nearest neighbor rule to develop an evidential editing version of this algorithm. An ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Institute of Information Security and Cryptology
سال: 2015
ISSN: 1598-3986
DOI: 10.13089/jkiisc.2015.25.4.817