Probabilistic Wind Speed Forecasting based on Minimal Gated Unit and Quantile Regression
نویسندگان
چکیده
منابع مشابه
Probabilistic Solar Forecasting Using Quantile Regression Models
In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of sola...
متن کاملAn Empirical Analysis of Constrained Support Vector Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power
Uncertainty analysis in the form of probabilistic forecasting can provide significant improvements in decision making processes in the smart power gird for better integrating renewable energies such as wind. Whereas point forecasting provides a single expected value, probabilistic forecasts provide more information in the form of quantiles, prediction intervals, or full predictive densities. Th...
متن کاملProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging
Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Statistical approaches to wind forecasting offer two particular challenges: the distribution of wind speeds is highly skewed, and wind observations are reported to the nearest whole knot...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولNoise model based v-support vector regression with its application to short-term wind speed forecasting
Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1659/1/012039