Prodihedral Groups as Galois Groups over Number Fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Groups over Nonrigid Fields

Let F be a field with charF 6= 2. We show that there are two groups of order 32, respectively 64, such that a field F with char F 6= 2 is nonrigid if and only if at least one of the two groups is realizable as a Galois group over F . The realizability of those groups turns out to be equivalent to the realizability of certain quotients (of order 16, respectively 32). Using known results on conne...

متن کامل

Computation of Galois groups over function fields

Symmetric function theory provides a basis for computing Galois groups which is largely independent of the coefficient ring. An exact algorithm has been implemented over Q(t1, t2, . . . , tm) in Maple for degree up to 8. A table of polynomials realizing each transitive permutation group of degree 8 as a Galois group over the rationals is included.

متن کامل

On projective linear groups over finite fields as Galois groups over the rational numbers

Ideas and techniques from Khare’s and Wintenberger’s article on the proof of Serre’s conjecture for odd conductors are used to establish that for a fixed prime l infinitely many of the groups PSL2(Flr ) (for r running) occur as Galois groups over the rationals such that the corresponding number fields are unramified outside a set consisting of l, the infinite place and only one other prime.

متن کامل

Galois Groups as Permutation Groups

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...

متن کامل

Large Selmer groups over number fields

Let p be a prime number and M a quadratic number field, M , Q( √ p) if p ≡ 1 mod 4. We will prove that for any positive integer d there exists a Galois extension F/Q with Galois group D2p and an elliptic curve E/Q such that F contains M and the p-Selmer group of E/F has size at least pd.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1996

ISSN: 0022-314X

DOI: 10.1006/jnth.1996.0128