Projective spaces over F1ℓ

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bundles over Quantum RealWeighted Projective Spaces

The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...

متن کامل

Morphisms of projective spaces over rings

The fundamental theorem of projective geometry is generalized for projective spaces over rings. Let RM and SN be modules. Provided some weak conditions are satisfied, a morphism g : PðMÞnE ! PðNÞ between the associated projective spaces can be induced by a semilinear map f : M ! N. These conditions are satisfied for instance if S is a left Ore domain and if the image of g contains three indepen...

متن کامل

Projective embedding of projective spaces

In this paper, embeddings φ : M → P from a linear space (M,M) in a projective space (P,L) are studied. We give examples for dimM > dimP and show under which conditions equality holds. More precisely, we introduce properties (G) (for a line L ∈ L and for a plane E ⊂ M it holds that |L ∩ φ(M)| 6 = 1) and (E) (φ(E) = φ(E) ∩ φ(M), whereby φ(E) denotes the by φ(E) generated subspace of P ). If (G) a...

متن کامل

Stably extendible vector bundles over the quaternionic projective spaces

We show that, if a quaternionic k-dimensional vector bundle l' over the quaternionic projective space Hpn is stably extendible and its non-zero top Pontrjagin class is not zero mod 2, then l' is stably equivalent to the Whitney sum of k quaternionic line bundles provided k S; n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Designs

سال: 2018

ISSN: 1063-8539

DOI: 10.1002/jcd.21639