Propagation time for zero forcing on a graph
نویسندگان
چکیده
منابع مشابه
Propagation time for zero forcing on a graph
Zero forcing (also called graph infection) on a simple, undirected graph G is based on the colorchange rule: If each vertex of G is colored either white or black, and vertex v is a black vertex with only one white neighbor w, then change the color of w to black. A minimum zero forcing set is a set of black vertices of minimum cardinality that can color the entire graph black using the color cha...
متن کاملZero forcing propagation time on oriented graphs
Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing ...
متن کاملOn the error of a priori sampling: zero forcing sets and propagation time
Zero forcing is an iterative process on a graph used to bound the maximum nullity. The process begins with select vertices as colored, and the remaining vertices can become colored under a specific color change rule. The goal is to find a minimum set of vertices such that after iteratively applying the rule, all of the vertices become colored (i.e., a minimum zero forcing set). Of particular in...
متن کاملZero forcing, tree width, and graph coloring
We show that certain types of zero-forcing sets for a graph give rise to chordal supergraphs and hence to proper colorings. Zero-forcing was originally defined to provide a bound for matrix minimum rank problems [1], but is interesting as a graph-theoretic notion in its own right [5], and has applications to mathematical physics, such as quantum systems [3]. There are different flavors of zero-...
متن کاملA Submodule-Based Zero Divisors Graph for Modules
Let $R$ be commutative ring with identity and $M$ be an $R$-module. The zero divisor graph of $M$ is denoted $Gamma{(M)}$. In this study, we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M, N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$. The main objective of this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2012
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.04.003