Properties of Matrix Variate Confluent Hypergeometric Function Distribution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-variate Gauss Hypergeometric Distribution

In this paper, we propose a matrix-variate generalization of the Gauss hypergeometric distribution and study several of its properties. We also derive probability density functions of the product of two independent random matrices when one of them is Gauss hypergeometric. These densities are expressed in terms of Appell’s first hypergeometric function F1 and Humbert’s confluent hypergeometric f...

متن کامل

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

Multivariate Generalization of the Confluent Hypergeometric Function Kind 1 Distribution

The confluent hypergeometric function kind 1 distribution with the probability density function pdf proportional to x −11F1 α; β;−x , x > 0 occurs as the distribution of the ratio of independent gamma and beta variables. In this article, a multivariate generalization of this distribution is defined and derived. Several pertinent properties of this multivariate distribution are discussed that sh...

متن کامل

On the confluent hypergeometric function coming from the Pareto distribution

Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form ζ(s) = hU(1; 1− h; s) = 1F1(1; 1− h; s)− Γ(1− h)s1F1(1 + h; 1 + h; s). About this transform, we obtain an identity, Γ(1 + h)|U(1, 1− h, s)|2 = ∫ ∞ 0 ∫ ∞ 0 λhe−λ−y |λ+ s|2 + λy 2000 Mathematical Subject Classification: 33C15, 60E07

متن کامل

Matrix-variate Beta Distribution

We propose matrix-variate beta type III distribution. Several properties of this distribution including Laplace transform, marginal distribution and its relationship with matrix-variate beta type I and type II distributions are also studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Probability and Statistics

سال: 2016

ISSN: 1687-952X,1687-9538

DOI: 10.1155/2016/2374907