Proximity and remoteness in directed and undirected graphs
نویسندگان
چکیده
Let D be a strongly connected digraph. The average distance σ̄(v) of vertex v is the arithmetic mean distances from to all other vertices D. remoteness ρ(D) and proximity π(D) are maximum minimum D, respectively. We obtain sharp upper lower bounds on as function order n describe extreme digraphs for bounds. also such strong tournaments. show that tournament T, we have π(T)=ρ(T) if only T regular. Due this result, one may conjecture every digraph with π(D)=ρ(D) present an infinite family non-regular π(D)=ρ(D). undirected graphs well.
منابع مشابه
New bounds on proximity and remoteness in graphs
The average distance of a vertex $v$ of a connected graph $G$is the arithmetic mean of the distances from $v$ to allother vertices of $G$. The proximity $pi(G)$ and the remoteness $rho(G)$of $G$ are defined as the minimum and maximum averagedistance of the vertices of $G$. In this paper we investigate the difference between proximity or remoteness and the classical distanceparameters diameter a...
متن کاملnew bounds on proximity and remoteness in graphs
the average distance of a vertex $v$ of a connected graph $g$is the arithmetic mean of the distances from $v$ to allother vertices of $g$. the proximity $pi(g)$ and the remoteness $rho(g)$of $g$ are defined as the minimum and maximum averagedistance of the vertices of $g$. in this paper we investigate the difference between proximity or remoteness and the classical distanceparameters diameter a...
متن کاملShortest Non-trivial Cycles in Directed and Undirected Surface Graphs
Let G be a graph embedded on a surface of genus g with b boundary cycles. We describe algorithms to compute multiple types of non-trivial cycles in G, using different techniques depending on whether or not G is an undirected graph. If G is undirected, then we give an algorithm to compute a shortest non-separating cycle in 2O(g)n log log n time. Similar algorithms are given to compute a shortest...
متن کاملEndomorphisms of undirected modifications of directed graphs
If z is an automorphism (or an endomorphism) of H, then it is also an automorphism (or an endomorphism) of %H and of %H. Hence the automorphism group Aut H is a subgroup of Aut 9?H and of Aut %H. Is there any other relation between the groups Aut H, Aut CBH and Aut %H? More in detail, which spans of groups, see Fig. 1, where m,, m2 are monomorphisms, can be realized by directed graphs H (in the...
متن کاملEigenvalues of directed and undirected graphs and their applications
In this thesis, we studied eigenvalues of directed and undirected graphs and their applications. In the first part, a detailed study of the largest eigenvalue of the normalized Laplace operator ∆ for undirected graphs was presented. In contrast to the smallest nontrivial eigenvalue λ1, the largest eigenvalue λn−1 has not been studied systematically before. However, it is well-known that λ1 can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2020.112252