Proximity inductive dimension and Brouwer dimension agree on compact Hausdorff spaces

نویسندگان

چکیده

We show that the proximity inductive dimension defined by Isbell agrees with Brouwer originally described (for Polish spaces without isolated points) on class of compact Hausdorff spaces. This shows Fedorchuk?s example a space whose exceeds its Lebesgue covering is an as Smirnov. answers Isbell?s question whether or not and coincide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function spaces and Hausdorff dimension on fractals

We start by surveying a possible approach for function spaces of Besov type on special closed subsets of Rn. Afterwards we recall that, in the case of Sobolev spaces and Besov spaces on Rn, the Hausdorff dimension for the graphs of continuous functions belonging to such spaces has been studied by several authors, and that in the case of Besov spaces the final answer concerning the maximal possi...

متن کامل

AN INDUCTIVE FUZZY DIMENSION

Using a system of axioms among with a modified definition of boundary on the basis of the intuitionistic fuzzy sets, we formulate an inductive structure for the dimension of fuzzy spaces which has been defined by Coker. This new definition of boundary allows to characterize an intuitionistic fuzzy clopen set as a set with zero boundary. Also, some critical properties and applications are establ...

متن کامل

Hausdorff Dimension in Convex Bornological Spaces

For non-metrizable spaces the classical Hausdorff dimension is meaningless. We extend the notion of Hausdorff dimension to arbitrary locally convex linear topological spaces, and thus to a large class of non-metrizable spaces. This involves a limiting procedure using the canonical bornological structure. In the case of normed spaces the new notion of Hausdorff dimension is equivalent to the cla...

متن کامل

On estimates of Hausdorff dimension of invariant compact sets

In this paper we present two approaches to estimate the Hausdorff dimension of an invariant compact set of a dynamical system: the method of characteristic exponents (estimates of KaplanYorke type) and the method of Lyapunov functions. In the first approach, using Lyapunov's first method we exploit charachteristic exponents for obtaining such estimate. A close relationship with uniform asymptot...

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2105431s