Proximunalty in Orlicz-bochner Function Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsquareness in Musielak-Orlicz-Bochner Function Spaces

and Applied Analysis 3 Proposition 1.2. Function σ t is μ-measurable. Proof. Pick a dense set {ri}i 1 in 0,∞ and set Bk { t ∈ T : M ( t, 1 2 rk ) 1 2 M t, rk } , qk t rkχBk t k ∈ N . 1.7 It is easy to see that for all k ∈ N, σ t ≥ qk t μ-a.e on T . Hence, supk≥1qk t ≤ σ t . For μ-a.e t ∈ T , arbitrarily choose ε ∈ 0, σ t . Then, there exists rk ∈ σ t − ε, σ t such that M t, 1/2 rk 1/2 M t, rk ,...

متن کامل

Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm

and Applied Analysis 3 Put LM X { u ∈ XT : ρM λu < ∞ for some λ > 0 } . 1.5 Then the Musielak-Orlicz-Bochner function space ‖u‖ inf k>0 1 k [ 1 ρM ku ] 1.6 is Banach space. If X R, LM R is said to be Musielak-Orlicz function space. Set K u { k > 0 : 1 k ( 1 ρM ku ) ‖u‖ } . 1.7 In particular, the set K u can be nonempty. To show that, we give a proposition. Proposition 1.1. If limu→∞ M t, u /u ∞...

متن کامل

An inequality in Orlicz function spaces with Orlicz norm

We use Simonenko quantitative indices of an N -function Φ to estimate two parameters qΦ and QΦ in Orlicz function spaces L [0,∞) with Orlicz norm, and get the following inequality: BΦ BΦ−1 ≤ qΦ ≤ QΦ ≤ AΦ Aφ−1 , where AΦ and BΦ are Simonenko indices. A similar inequality is obtained in L[0, 1] with Orlicz norm.

متن کامل

The near Radon-nikodym Property in Lebesgue-bochner Function Spaces

Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2003

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.34.2003.274