Pseudo-Likelihood Methodology for Hierarchical Count Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semiparametric Regression Model for Panel Count Data: When Do Pseudo-likelihood Estimators Become Badly Inefficient?

We consider estimation in a particular semiparametric regression model for the mean of a counting process under the assumption of “panel count” data. The basic model assumption is that the conditional mean function of the counting process is of the form E{N(t)|Z} = exp(θ′Z)Λ(t) where Z is a vector of covariates and Λ is the baseline mean function. The “panel count” observation scheme involves o...

متن کامل

Pseudo-likelihood Estimation for Incomplete Data

In statistical practice, incomplete measurement sequences are the rule rather than the exception. Fortunately, in a large variety of settings, the stochastic mechanism governing the incompleteness can be ignored without hampering inferences about the measurement process. While ignorability only requires the relatively general missing at random assumption for likelihood and Bayesian inferences, ...

متن کامل

Singular count pseudo-partitives1

Inversion-constructions, like too tasty of a cake and a disaster of a conference, have generally been treated separately from superficially similar-looking pseudo-partitives, like three gallons of water. I argue for an analysis that unifies the syntax and semantics of the two constructions through a proposal about the head of that appears in both. Both constructions involve the composition of t...

متن کامل

Quantile regression for overdispersed count data: a hierarchical method

Generalized Poisson regression is commonly applied to overdispersed count data, and focused on modelling the conditional mean of the response. However, conditional mean regression models may be sensitive to response outliers and provide no information on other conditional distribution features of the response. We consider instead a hierarchical approach to quantile regression of overdispersed c...

متن کامل

A hierarchical spatiotemporal analog forecasting model for count data

Analog forecasting is a mechanism-free nonlinear method that forecasts a system forward in time by examining how past states deemed similar to the current state moved forward. Previous applications of analog forecasting has been successful at producing robust forecasts for a variety of ecological and physical processes, but it has typically been presented in an empirical or heuristic procedure,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 2014

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610926.2012.744053