Pseudocyclic and non-amorphic fusion schemes of the cyclotomic association schemes
نویسندگان
چکیده
منابع مشابه
Pseudocyclic and non-amorphic fusion schemes of the cyclotomic association schemes
We construct twelve infinite families of pseudocyclic and non-amorphic association schemes, in which each nontrivial relation is a strongly regular graph. Three of the twelve families generalize the counterexamples to A. V. Ivanov’s conjecture by Ikuta and Munemasa [13].
متن کاملOn Pseudocyclic Association Schemes
The notion of pseudocyclic association scheme is generalized to the non-commutative case. It is proved that any pseudocyclic scheme the rank of which is much more than the valency is the scheme of a Frobenius group and is uniquely determined up to isomorphism by its intersection number array. An immediate corollary of this result is that any scheme of prime degree, valency k and rank at least k...
متن کاملSome implications on amorphic association schemes
Users may download and print one copy of any publication from the public portal for the purpose of private study or research You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact...
متن کاملDavenport-Hasse theorem and cyclotomic association schemes
Definition. Let q be a prime power and e be a divisor of q − 1. Fix a generator α of the multiplicative group of GF (q). Then 〈α〉 is a subgroup of index e and its cosets are 〈α〉α, i = 0, . . . , e− 1. Define R0 = {(x, x)|x ∈ GF (q)} Ri = {(x, y)|x, y ∈ GF (q), x− y ∈ 〈αe〉αi−1}, (1 ≤ i ≤ e) R = {Ri|0 ≤ i ≤ e} Then (GF (q),R) forms an association scheme and is called the cyclotomic scheme of clas...
متن کاملAmorphic association schemes with negative Latin square-type graphs
Applying results from partial difference sets, quadratic forms, and recent results of Brouwer and Van Dam, we construct the first known amorphic association scheme with negative Latin square type graphs and whose underlying set is a nonelementary abelian 2-group. We give a simple proof of a result of Hamilton that generalizes Brouwer’s result. We use multiple distinct quadratic forms to constru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2011
ISSN: 0925-1022,1573-7586
DOI: 10.1007/s10623-011-9595-9