Pulsar Timing Response to Gravitational Waves with Spherical Wave Fronts from a Massive Compact Source in the Quadrupole Approximation
نویسندگان
چکیده
Abstract Pulsar timing arrays (PTAs) are searching for nanohertz-frequency gravitational waves (GWs) through cross-correlation of pulse arrival times from a set radio pulsars. PTAs have relied on frequency-shift formula the pulse, where planar GWs usually assumed. Phase corrections due to wave front curvature been recently discussed. In this paper, and timing-residual formulae derived with fully spherical fronts compact source such as binary supermassive black holes, differences in GW amplitude direction between Earth pulsar examined quadrupole approximation. By using new formulae, effects beyond plane-wave approximation discussed, galactic center PTA nearby candidates also mentioned.
منابع مشابه
Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >...
متن کاملGravitational waves from inspiraling compact binaries: The quadrupole-moment term
A rotating star’s oblateness creates a deformation in the gravitational field outside the star, which is measured by the quadrupole-moment tensor. We consider the effect of the quadrupole moment on the orbital motion and rate of inspiral of a compact binary system, composed of neutron stars and/or black holes. We find that in the case of circular orbits, the quadrupole-monopole interaction affe...
متن کاملLow-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays
The coalescence of massive black hole (BH) binaries due to galaxy mergers provides a primary source of low-frequency gravitational radiation detectable by pulsar timing measurements and by the proposed LISA (Laser Interferometry Space Antenna) observatory. We compute the expected gravitational radiation signal from sources at all redshifts by combining the predicted merger rate of galactic halo...
متن کاملThe stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays
Massive black hole binary systems, with masses in the range ∼ 10 − 10 M⊙, are among the primary sources of gravitational waves in the frequency window ∼ 10 Hz−0.1Hz. Pulsar Timing Arrays (PTAs) and the Laser Interferometer Space Antenna (LISA) are the observational means by which we will be able to observe gravitational radiation from these systems. We carry out a systematic study of the genera...
متن کاملSearch for Memory and Inspiral Gravitational Waves from Super-Massive Binary Black Holes with Pulsar Timing Arrays
The merger of a super-massive binary black hole (SBBH) is one of the most extreme events in the universe with a huge amount of energy released by gravitational radiation. Although the characteristic gravitational wave (GW) frequency around the merger event is far higher than the nHz regime optimal for pulsar timing arrays (PTAs), nonlinear GW memory might be a critical smoking gun of the merger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2023
ISSN: ['2041-8213', '2041-8205']
DOI: https://doi.org/10.3847/1538-4357/acc027