Pure strictly uniform models of non-ergodic measure automorphisms

نویسندگان

چکیده

<p style='text-indent:20px;'>The classical theorem of Jewett and Krieger gives a strictly ergodic model for any measure preserving system. An extension this result non-ergodic systems was given many years ago by George Hansel. He constructed, system, uniform model, i.e. compact space which admits an upper semicontinuous decomposition into models the components measure. In note we give new proof stronger adding condition purity, controls set measures that appear in model.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly ergodic, uniform positive entropy models

© Bulletin de la S. M. F., 1994, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Uniform Szego cocycles over strictly ergodic subshifts

We consider ergodic families of Verblunsky coefficients generated by minimal aperiodic subshifts. Simon conjectured that the associated probability measures on the unit circle have essential support of zero Lebesgue measure. We prove this for a large class of subshifts, namely those satisfying Boshernitzan’s condition. This is accomplished by relating the essential support to uniform convergenc...

متن کامل

On Strictly Ergodic Models Which Are Not Almost Topologically Conjugate

Answering a question raised by Glasner and Rudolph (1984) we construct uncountably many strictly ergodic topological systems which are metrically isomorphic to a given ergodic system (X,63, #, T) but not almost topologically conjugate to it.

متن کامل

Ergodic properties of quantized toral automorphisms

We study the ergodic properties for a class of quantized toral automorphisms, namely the cat and Kronecker maps. The present work uses and extends the results of [KL]. We show that quantized cat maps are strongly mixing, while Kronecker maps are ergodic and nonmixing. We also study the structure of these quantum maps and show that they are effected by unitary endomorphisms of a suitable vector ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2022

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021140