Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties
نویسندگان
چکیده
منابع مشابه
Points of Bounded Height on Algebraic Varieties
Introduction 1 1. Heights on the projective space 3 1.1. Basic height function 3 1.2. Height function on the projective space 5 1.3. Behavior under maps 7 2. Heights on varieties 9 2.1. Divisors 9 2.2. Heights 13 3. Conjectures 19 3.1. Zeta functions and counting 19 3.2. Height zeta function 20 3.3. Results and methods 22 3.4. Examples 24 4. Compactifications of Semi-Simple Groups 26 4.1. A Con...
متن کاملCounting Rational Points on Algebraic Varieties
In these lectures we will be interested in solutions to Diophantine equations F (x1, . . . , xn) = 0, where F is an absolutely irreducible polynomial with integer coefficients, and the solutions are to satisfy (x1, . . . , xn) ∈ Z. Such an equation represents a hypersurface in A, and we may prefer to talk of integer points on this hypersurface, rather than solutions to the corresponding Diophan...
متن کاملCounting Rational Points on Ruled Varieties
In this paper, we prove a general result computing the number of rational points of bounded height on a projective variety V which is covered by lines. The main technical result used to achieve this is an upper bound on the number of rational points of bounded height on a line. This upper bound is such that it can be easily controlled as the line varies, and hence is used to sum the counting fu...
متن کاملCounting Rational Points on Algebraic Varieties
For any N ≥ 2, let Z ⊂ P be a geometrically integral algebraic variety of degree d. This paper is concerned with the number NZ(B) of Q-rational points on Z which have height at most B. For any ε > 0 we establish the estimate NZ(B) = Od,ε,N (B ), provided that d ≥ 6. As indicated, the implied constant depends at most upon d, ε and N . Mathematics Subject Classification (2000): 11G35 (14G05)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2020
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnz362