Quadratic Sparse Domination and Weighted Estimates for Non-integral Square Functions

نویسندگان

چکیده

Abstract We prove a quadratic sparse domination result for general non-integral square functions S . That is, $$p_0 \in [1,2)$$ p 0 ∈ [ 1 , 2 ) and $$q_0 (2,\infty ]$$ q ( ∞ ] , we an estimate of the form "Equation missing"where $$q_{0}^{*}$$ ∗ is Hölder conjugate $$q_{0}/2$$ / M underlying doubling space $${\mathcal {S}}$$ S collection cubes on Our will cover both associated with divergence elliptic operators those Laplace–Beltrami operator. This allows us to derive optimal norm estimates in weighted $$L^{p}(w)$$ L w

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted estimates for rough bilinear singular integrals via sparse domination

We prove weighted estimates for rough bilinear singular integral operators with kernel K(y1, y2) = Ω((y1, y2)/|(y1, y2)|) |(y1, y2)| , where yi ∈ R and Ω ∈ L∞(S2d−1) with ∫ S2d−1 Ωdσ = 0. The argument is by sparse domination of rough bilinear operators, via an abstract theorem that is a multilinear generalization of recent work by CondeAlonso, Culiuc, Di Plinio and Ou, 2016. We also use recent ...

متن کامل

On Sharp Aperture-Weighted Estimates for Square Functions

Let Sα,ψ( f ) be the square function defined by means of the cone in R n+1 + of aperture α, and a standard kernel ψ . Let [w]Ap denote the Ap characteristic of the weight w. We show that for any 1 < p < ∞ and α ≥ 1, ‖Sα,ψ‖L p(w) αn[w] max ( 1 2 , 1 p−1 ) Ap . For each fixed α the dependence on [w]Ap is sharp. Also, on all class Ap the result is sharp in α. Previously this estimate was proved in...

متن کامل

Weighted Estimates for the Averaging Integral Operator

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) satisfying: (?) v(x)xis equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0; [w(x)x] ≈ [v(x)x] for all x ∈ (0,+∞). We prove that if the averaging operator (Af)(x) := 1 x R x 0 f(t) dt, x ∈ (0,+∞), is bounded from the weighted Lebesgue space Lp((0,+∞); v) into the weighted Lebesgue space Lq((0,+∞);w), then there exists ε0 ∈ (0, p−...

متن کامل

Weighted Estimates for Bilinear Fractional Integral Operators and Their Commutators

In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...

متن کامل

On Weak and Strong Sharp Weighted Estimates of Square Function

We reduce here end-point estimates for one singular operator (namely for dyadic square function) to Monge–Ampère equations with drift. The spaces are weighted spaces, and therefore the domain, where we solve our PDE is non-convex. If we are in the end-point situation our goal is either to find a logarithmic blow-up of the norm estimate from below, or to prove that there is upper estimate of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2022

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-022-01031-w