Quadrature sums and Lagrange interpolation for general exponential weights
نویسندگان
چکیده
منابع مشابه
Quadrature Sums and Lagrange Interpolation for General Exponential Weights
where > 0. Once the theory had been developed in its entirety, it became clear that one could simultaneously treat not only weights like those above, but also not necessarily even weights on a general real interval. See [3], [12], [16] for various perspectives on this type of potential theory and its applications. One important application is to Lagrange interpolation. Mean convergence of Lagra...
متن کاملHomogeneous Weights and Exponential Sums
In this paper, we give a formula as an exponential sum for a homogeneous weight defined by Constantinescu and Heise [3] in the case of Galois rings (or equivalently, rings of Witt vectors) and use this formula to estimate the weight of codes obtained from algebraic geometric codes over rings.
متن کاملGaussian interval quadrature rule for exponential weights
Interval quadrature formulae of Gaussian type on R and R+ for exponential weight functions of the form w(x) = exp(−Q(x)), where Q is a continuous function on its domain and such that all algebraic polynomials are integrable with respect to w, are considered. For a given set of nonoverlapping intervals and an arbitrary n, the uniqueness of the n-point interval Gaussian rule is proved. The result...
متن کاملOn quadrature convergence of extended Lagrange interpolation
Quadrature convergence of the extended Lagrange interpolant L2n+1f for any continuous function f is studied, where the interpolation nodes are the n zeros τi of an orthogonal polynomial of degree n and the n+ 1 zeros τ̂j of the corresponding “induced” orthogonal polynomial of degree n + 1. It is found that, unlike convergence in the mean, quadrature convergence does hold for all four Chebyshev w...
متن کاملPointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights
For a general class of exponential weights on the line and on (−1, 1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near ±∞ (Freud weights), even weights of faster than smooth polynomial decay near ±∞ (Erdős weights) and even weights which vanish strongly near ±1, for example Pollaczek type weights. 1991...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2003
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(02)00747-1