Qualitative Theory of Two-Dimensional Polynomial Dynamical Systems
نویسندگان
چکیده
A qualitative theory of two-dimensional quadratic-polynomial integrable dynamical systems (DSs) is constructed on the basis a discriminant criterion elaborated in paper. This enables one to pick up single parameter that makes it possible identify all feasible solution classes as well DS critical and singular points solutions. The integrability considered family established. Nine specific are identified. In each class, clear types symmetry determined visualized discussed how transformations between create new symmetries. Visualization performed series phase portraits revealing catastrophic scenarios result from transition classes.
منابع مشابه
Qualitative theory of hybrid dynamical systems
matrices and M matrices instead. Though there are a good monograph (Berman & Plemmons, 1994) and an article (Fiedler & PtA ak, 1962), these subjects are not covered by a standard linear algebra course. Notwithstanding the above points, I strongly recommend the book because it covers important properties of positive systems, and it includes wide range of applications. I particularly :nd the anno...
متن کاملOn Two-parameter Dynamical Systems and Applications
In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed
متن کاملMultiresonant control of two-dimensional dynamical systems.
It is shown that many two degree of freedom (2D) nonlinear dynamical systems can be controlled by continuous phase-locking (double autoresonance) between the two canonical angle variables of the system and two independent external oscillating perturbations having slowly varying frequencies. Conditions for stability of the 2D autoresonance and classification of systems with doubly autoresonant s...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولReachability in One-Dimensional Controlled Polynomial Dynamical Systems
In this paper we investigate a case of the reachability problem in controlled o-minimal dynamical systems. This problem can be formulated as follows. Given a controlled o-minimal dynamical system initial and target sets, find a finite choice of time points and control parameters applied at these points such that the target set is reachable from the initial set. We prove that the existence of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym13101884