Quantitative Korovkin theorems for positive linear operators on $L\sb{p}$-spaces
نویسندگان
چکیده
منابع مشابه
Korovkin-type Theorems and Approximation by Positive Linear Operators
This survey paper contains a detailed self-contained introduction to Korovkin-type theorems and to some of their applications concerning the approximation of continuous functions as well as of L-functions, by means of positive linear operators. The paper also contains several new results and applications. Moreover, the organization of the subject follows a simple and direct approach which quick...
متن کاملKorovkin-Type Theorems in Weighted Lp-Spaces via Summation Process
Korovkin-type theorem which is one of the fundamental methods in approximation theory to describe uniform convergence of any sequence of positive linear operators is discussed on weighted Lp spaces, 1 ≤ p < ∞ for univariate and multivariate functions, respectively. Furthermore, we obtain these types of approximation theorems by means of A-summability which is a stronger convergence method than ...
متن کاملAbstract Korovkin-type theorems in modular spaces and applications
Korovkin-type theorems in modular spaces and applications C. Bardaro ∗ A. Boccuto † X. Dimitriou ‡ I. Mantellini § Abstract We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results even with respect to an axiomatic convergence, whose...
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1978
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1978-0511414-6