Quantitative Modeling of Bacterial Chemotaxis: Signal Amplification and Accurate Adaptation
نویسندگان
چکیده
منابع مشابه
Adaptation kinetics in bacterial chemotaxis.
Cells of Escherichia coli, tethered to glass by a single flagellum, were subjected to constant flow of a medium containing the attractant alpha-methyl-DL-aspartate. The concentration of this chemical was varied with a programmable mixing apparatus over a range spanning the dissociation constant of the chemoreceptor at rates comparable to those experienced by cells swimming in spatial gradients....
متن کاملCollective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for indiv...
متن کاملUniversal response-adaptation relation in bacterial chemotaxis.
The bacterial strategy of chemotaxis relies on temporal comparisons of chemical concentrations, where the probability of maintaining the current direction of swimming is modulated by changes in stimulation experienced during the recent past. A short-term memory required for such comparisons is provided by the adaptation system, which operates through the activity-dependent methylation of chemot...
متن کاملSignal transduction: Hair brains in bacterial chemotaxis
The conserved cytoplasmic domains of bacterial chemotaxis receptors are a fibrous arrangement of alpha-helical coiled coils that look a lot like hair. Such bundles of alpha-helical filaments mediate sensory-motor responses in all prokaryotic cells. How do they work? Very nearly perfectly is probably as good an answer as any.
متن کاملDependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate
Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Biophysics
سال: 2013
ISSN: 1936-122X,1936-1238
DOI: 10.1146/annurev-biophys-083012-130358