Quantitative stability for hypersurfaces with almost constant mean curvature in the hyperbolic space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity and Sharp Stability Estimates for Hypersurfaces with Constant and Almost-constant Nonlocal Mean Curvature

We prove that the boundary of a (not necessarily connected) bounded smooth set with constant nonlocal mean curvature is a sphere. More generally, and in contrast with what happens in the classical case, we show that the Lipschitz constant of the nonlocal mean curvature of such a boundary controls its C-distance from a single sphere. The corresponding stability inequality is obtained with a shar...

متن کامل

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Let M be a complete hypersurface with constant normalized scalar curvature R in a hyperbolic space form H. We prove that if R̄ = R + 1 ≥ 0 and the norm square |h| of the second fundamental form of M satisfies nR̄ ≤ sup |h| ≤ n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], then either sup |h| = nR̄ and M is a totally umbilical hypersurface; or sup |h| = n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], and M i...

متن کامل

Stability of Hypersurfaces with Constant R-th Anisotropic Mean Curvature

Given a positive function F on S which satisfies a convexity condition, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R n+1 which is a generalization of the usual r-th mean curvature function. Let X : M → R be an n-dimensional closed hypersurface with H r+1 =constant, for some r with 0 ≤ r ≤ n− 1, which is a critical point for a variational problem. We show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2020

ISSN: 0022-2518

DOI: 10.1512/iumj.2020.69.7952