Quantum-polarization state tomography
نویسندگان
چکیده
منابع مشابه
Efficient quantum state tomography.
Quantum state tomography--deducing quantum states from measured data--is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes unfeasible because the number of measurements and the amount of computation required to process them grows exponentially in the system size. Here, we present two tom...
متن کاملReliable quantum state tomography.
Quantum state tomography is the task of inferring the state of a quantum system by appropriate measurements. Since the frequency distributions of the outcomes of any finite number of measurements will generally deviate from their asymptotic limits, the estimates computed by standard methods do not in general coincide with the true state and, therefore, have no operational significance unless th...
متن کاملPolarization-sensitive quantum optical coherence tomography: Experiment
a Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA b Quantum Photonics Laboratory, Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA c Quantum Photonics Laboratory, College of Optics and Photonics (CREOL), University of Central Florida, Orlando, FL 32816, USA d Department of Electrical Engineering, Columbia University, New Yo...
متن کاملPolarization-sensitive quantum-optical coherence tomography
Mark C. Booth, Giovanni Di Giuseppe,* Bahaa E. A. Saleh, Alexander V. Sergienko, and Malvin C. Teich Quantum Imaging Laboratory, Department of Biomedical Engineering, Boston University, 8 Saint Mary’s Street, Boston, Massachusetts 02215, USA Quantum Imaging Laboratory, Department of Electrical & Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, Massachusetts 02215, USA Qua...
متن کاملFourier-transform quantum state tomography
We propose a technique for performing quantum state tomography of photonic polarization-encoded multiqubit states. Our method uses a single rotating wave plate, a polarizing beam splitter, and two photon-counting detectors per photon mode. As the wave plate rotates, the photon counters measure a pseudocontinuous signal which is then Fourier transformed. The density matrix of the state is recons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2016
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.94.020105