Quark-diquark potential and diquark mass from lattice QCD

نویسندگان

چکیده

We propose a new application of lattice QCD to calculate the quark-diquark potential, diquark mass, and quark mass required for model. As concrete example, we consider ${\mathrm{\ensuremath{\Lambda}}}_{c}$ baryon treat it as charm-diquark ($c$-[$ud$]) two-body bound state. extend HAL method which reproduces equal-time Nambu-Bethe-Salpeter wave function S-wave state [${\mathrm{\ensuremath{\Lambda}}}_{c}({\frac{1}{2}}^{+})$]. The is determined so reproduce difference between spin-orbit averaged P-wave energies, i.e., ${\mathrm{\ensuremath{\Lambda}}}_{c}({\frac{1}{2}}^{+})$ level average ${\mathrm{\ensuremath{\Lambda}}}_{c}({\frac{1}{2}}^{\ensuremath{-}})$ ${\mathrm{\ensuremath{\Lambda}}}_{c}({\frac{3}{2}}^{\ensuremath{-}})$ levels. Numerical calculations are performed on ${32}^{3}\ifmmode\times\else\texttimes\fi{}64$ with spacing $a\ensuremath{\simeq}0.0907\text{ }\text{ }\mathrm{fm}$ pion ${m}_{\ensuremath{\pi}}\ensuremath{\simeq}700\text{ }\mathrm{MeV}$. Our potential given by $\mathrm{Coulomb}+\mathrm{linear}$ (Cornell) where long range behavior consistent charm-anticharm while Coulomb attraction considerably smaller. This weakening may be attributed size effect. obtained ${m}_{D}=1.273(44)\text{ }\mathrm{GeV}$. lies slightly above conventional estimates, namely $\ensuremath{\rho}$ meson twice constituent $2{m}_{N}/3$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diquark properties from lattice QCD

It has been argued recently that diquarks, a pair of quarks in the anti-triplet representation of SU(3) color, are important building blocks of baryons. The assumption that the scalar diquark is tightly bound seems to be nicely accommodated by experimental data. In this paper I attempt to extract phenomenological properties of diquarks from lattice QCD calculations. In particular, I use the MIL...

متن کامل

Pentaquark and diquark-diquark clustering: a QCD sum rule approach

In this work we study the Θ+(1540) in the framework of QCD sum rules based on (ud)2s̄ diquark clustering as suggested by Jaffe and Wilczek. Within errors, the mass of the pentaquark is compatible with the experimentally measured value. The mass difference between the Θ+ and the pentaquark with the quantum numbers of the nucleon amounts to 70 MeV, consistent with the interpretation of the N(1440)...

متن کامل

Interquark potential with finite quark mass from lattice QCD.

We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark....

متن کامل

Nucleons in the Covariant Quark–diquark Model

We introduce diquarks as separable correlations in the two–quark Green’s function to facilitate the description of baryons as relativistic three– quark bound states. These states then emerge as solutions of Bethe– Salpeter equations for quarks and diquarks that interact via quark exchange. Approximating quark and diquark propagators by the corresponding free ones, we calculate nucleon static pr...

متن کامل

Roper Resonance in a Quark-diquark Model

We discuss a new description for the Roper resonance, the first nucleon excited state of JP = 1/2+, in a model of strong diquark correlations. Treating the scalarisoscalar and axial-vector–isovector diquarks as independent degrees of freedom, two states having nucleon quantum numbers are constructed. Due to the scalar and axial-vector nature of the diquarks, the two nucleon states have differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.105.074510