Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints
نویسندگان
چکیده
منابع مشابه
WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملNewton-Type Methods for Optimization Problems without Constraint Qualifications
We consider equality-constrained optimization problems, where a given solution may not satisfy any constraint qualification but satisfies the standard second-order sufficient condition for optimality. Based on local identification of the rank of the constraints degeneracy via the singular-value decomposition, we derive a modified primal-dual optimality system whose solution is locally unique, n...
متن کاملweak and strong duality theorems for fuzzy conic optimization problems
the objective of this paper is to deal with the fuzzy conic program- ming problems. the aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. toward this end, the convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. un- der this setting, duality t...
متن کاملConstraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints
A very general optimization problem with a variational inequality constraint, inequality constraints, and an abstract constraint are studied. Fritz John type and Kuhn–Tucker type necessary optimality conditions involving Mordukhovich coderivatives are derived. Several constraint qualifications for the Kuhn–Tucker type necessary optimality conditions involving Mordukhovich coderivatives are intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2010
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.09.006