Quasiconvex relaxation of isotropic functions in incompressible planar hyperelasticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline-Based Hyperelasticity for Transversely Isotropic Incompressible Materials

In this paper we present a spline-based hyperelastic model for incompressible transversely isotropic solids. The formulation is based on the Sussman-Bathe model for isotropic hyperelastic materials. We extend this model to transversely isotropic materials following a similar procedure. Our formulation is able to exactly represent the prescribed behavior for isotropic hyperelastic solids, recove...

متن کامل

Error estimation and adaptivity for incompressible hyperelasticity

A Galerkin FEM is developed for nonlinear, incompressible (hyper) elasticity that takes account of nonlinearities in both the strain tensor and the relationship between the strain tensor and the stress tensor. By using suitably defined linearised dual problems with appropriate boundary conditions, a posteriori error estimates are then derived for both linear functionals of the solution and line...

متن کامل

Incompressible Grassmannians of Isotropic Subspaces

We study 2-incompressible Grassmannians of isotropic subspaces of a quadratic form, of a hermitian form over a quadratic extension of the base field, and of a hermitian form over a quaternion algebra.

متن کامل

The Relaxation of Non - Quasiconvex Variational IntegralsPetr

We show that the Steepest Descent Algorithm in connection with wiggly energies yields minimizing sequences that converge to a global minimum of the associated non-quasiconvex variational integrals. We introduce a multi-level innnite dimensional variant of the Steepest Descent Algorithm designed to compute complex microstructures by forming non-smooth minimizers from the smooth initial guess. We...

متن کامل

Quasiconvex functions and Hessian equations

In this note we construct new examples of quasiconvex functions defined on the set Sn×n of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1, 2, ..., n. The idea is motivated by Šverák’s paper [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently, see [CNS], [T], [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2019

ISSN: 0308-2105,1473-7124

DOI: 10.1017/prm.2019.35