Quasilinearization for some nonlocal problems
نویسندگان
چکیده
منابع مشابه
Quasilinearization Method and Nonlocal Singular Three Point Boundary Value Problems
The method of upper and lower solutions and quasilinearization for nonlinear singular equations of the type −x(t) + λx(t) = f(t, x(t)), t ∈ (0, 1), subject to nonlocal three-point boundary conditions x(0) = δx(η), x(1) = 0, 0 < η < 1, are developed. Existence of a C1 positive solution is established. A monotone sequence of solutions of linear problems converging uniformly and rapidly to a solut...
متن کاملGeneralized Quasilinearization for Nonlinear Three-point Boundary Value Problems with Nonlocal Conditions
We apply the generalized quasilinearization technique to obtain a monotone sequence of iterates converging quadratically to the unique solution of a general second order nonlinear differential equation with nonlinear nonlocal mixed three-point boundary conditions. The convergence of order n (n ≥ 2) of the sequence of iterates has also been established.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Approximation of Solutions for Second-Order m-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
We discuss the existence and uniqueness of the solutions of a second-order m-point nonlocal boundary value problem by applying a generalized quasilinearization technique. A monotone sequence of solutions converging uniformly and quadratically to a unique solution of the problem is presented.
متن کاملQuasilinearization Approach to Nonlinear Problems in Physics
The general conditions under which the quadratic, uniform and monotonic convergence in the quasilinearization method could be proved are formulated and elaborated. The method, whose mathematical basis in physics was discussed recently by one of the present authors (VBM), approximates the solution of a nonlinear differential equation by treating the nonlinear terms as a perturbation about the li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis
سال: 1993
ISSN: 1048-9533,1687-2177
DOI: 10.1155/s1048953393000115