Quenched Invariance Principles for Random Walks with Random Conductances

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenched invariance principles for random walks with random conductances

We prove an almost sure invariance principle for a random walker among i.i.d. conductances in Zd, d ≥ 2. We assume conductances are bounded from above but we do not require that they are bounded from below.

متن کامل

Quenched invariance principles for random walks on percolation clusters

We prove the almost sure (’quenched’) invariance principle for a random walker on an infinite percolation cluster in Z, d ≥ 2.

متن کامل

Quenched invariance principle for random walks in balanced random environment

We consider random walks in a balanced random environment in Z , d ≥ 2. We first prove an invariance principle (for d ≥ 2) and the transience of the random walks when d ≥ 3 (recurrence when d = 2) in an ergodic environment which is not uniformly elliptic but satisfies certain moment condition. Then, using percolation arguments, we show that under mere ellipticity, the above results hold for ran...

متن کامل

Quenched Invariance Principles for the Random Conductance Model on a Random Graph with Degenerate Ergodic Weights

We consider a stationary and ergodic random field {ω(e) : e ∈ Ed} that is parameterized by the edge set of the Euclidean lattice Z, d ≥ 2. The random variable ω(e), taking values in [0,∞) and satisfying certain moment bounds, is thought of as the conductance of the edge e. Assuming that the set of edges with positive conductances give rise to a unique infinite cluster C∞(ω), we prove a quenched...

متن کامل

The quenched invariance principle for random walks in random environments admitting a bounded cycle representation

We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219– 244) to the non-reversible setting. Résumé. Nous dérivons un principe d’in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2007

ISSN: 0022-4715,1572-9613

DOI: 10.1007/s10955-007-9465-z