Query-Aware Quantization for Maximum Inner Product Search

نویسندگان

چکیده

Maximum Inner Product Search (MIPS) plays an essential role in many applications ranging from information retrieval, recommender systems to natural language processing. However, exhaustive MIPS is often expensive and impractical when there are a large number of candidate items. The state-of-the-art quantization method approximated product with score-aware loss, developed by assuming that queries uniformly distributed the unit sphere. real-world datasets, above assumption about does not necessarily hold. To this end, we propose based on distribution combined sampled softmax. Further, introduce general framework encompassing proposed multiple methods, develop effective optimization for framework. evaluated three datasets. experimental results show it outperforms baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization based Fast Inner Product Search

We propose a quantization based approach for fast approximate Maximum Inner Product Search (MIPS). Each database vector is quantized in multiple subspaces via a set of codebooks, learned directly by minimizing the inner product quantization error. Then, the inner product of a query to a database vector is approximated as the sum of inner products with the subspace quantizers. Different from rec...

متن کامل

A Greedy Approach for Budgeted Maximum Inner Product Search

Maximum Inner Product Search (MIPS) is an important task in many machine learning applications such as the prediction phase of a low-rank matrix factorization model for a recommender system. There have been some works on how to perform MIPS in sub-linear time recently. However, most of them do not have the flexibility to control the trade-off between search efficient and search quality. In this...

متن کامل

Indexable Probabilistic Matrix Factorization for Maximum Inner Product Search

The Maximum Inner Product Search (MIPS) problem, prevalent in matrix factorization-based recommender systems, scales linearly with the number of objects to score. Recent work has shown that clever post-processing steps can turn the MIPS problem into a nearest neighbour one, allowing sublinear retrieval time either through Locality Sensitive Hashing or various tree structures that partition the ...

متن کامل

Clustering is Efficient for Approximate Maximum Inner Product Search

Efficient Maximum Inner Product Search (MIPS) is an important task that has a wide applicability in recommendation systems and classification with a large number of classes. Solutions based on locality-sensitive hashing (LSH) as well as tree-based solutions have been investigated in the recent literature, to perform approximate MIPS in sublinear time. In this paper, we compare these to another ...

متن کامل

Learning and Inference via Maximum Inner Product Search

A large class of commonly used probabilistic models known as log-linear models are defined up to a normalization constant.Typical learning algorithms for such models require solving a sequence of probabilistic inference queries. These inferences are typically intractable, and are a major bottleneck for learning models with large output spaces. In this paper, we provide a new approach for amorti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i4.25613