Quiver D-modules and homology of local systems over an arrangement of hyperplanes
نویسندگان
چکیده
منابع مشابه
Generalized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.
متن کاملRich Cells in an Arrangement of Hyperplanes
A cell of an arrangement of n hyperplanes is rich if its boundary contains a piece of each hyperplane. We give an asymptotically tight upper bound on the number of rich cells, as n tends to infinity. *Supported in part by Hungarian National Science Foundation grant 1907 and 1909. ‘Supported by SERC grant 90001866. ‘Research supported by NSF grants CCR-91-22103 and OTKA-4269. LINEAR ALGEBRA AND ...
متن کاملDepth in an Arrangement of Hyperplanes
Peter J. Rousseeuw and Mia Hubert Revised version, 25 May 1998 Department of Mathematics and Computer Science, U.I.A., Universiteitsplein 1, B-2610 Antwerp, Belgium [email protected] Abstract A collection of n hyperplanes in Rd forms a hyperplane arrangement. The depth of a point 2 Rd is the smallest number of hyperplanes crossed by any ray emanating from . For d = 2 we prove that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Papers
سال: 2010
ISSN: 1687-3017,1687-3009
DOI: 10.1155/imrp/2006/69590