Random matrices with prescribed eigenvalues and expectation values for random quantum states
نویسندگان
چکیده
منابع مشابه
Construction of matrices with prescribed singular values and eigenvalues
Two issues concerning the construction of square matrices with prescribed singular values and eigenvalues are addressed. First, a necessary and sufficient condition for the existence of an n × n complex matrix with n given nonnegative numbers as singular values and m(≤ n) given complex numbers to be m of the eigenvalues is determined. This extends the classical result of Weyl and Horn treating ...
متن کاملOn the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values
Given any fixed N×N positive semi-definite diagonal matrix G ≥ 0 we derive the explicit formula for the density of complex eigenvalues for random matrices A of the form A = U √ G where the random unitary matrices U are distributed on the group U(N) according to the Haar measure.
متن کاملEigenvalues of Euclidean random matrices
We study the spectral measure of large Euclidean random matrices. The entries of these matrices are determined by the relative position of n random points in a compact set Ωn of R. Under various assumptions we establish the almost sure convergence of the limiting spectral measure as the number of points goes to infinity. The moments of the limiting distribution are computed, and we prove that t...
متن کاملDensity of Eigenvalues of Random Normal Matrices
The relation between random normal matrices and conformal mappings discovered by Wiegmann and Zabrodin is made rigorous by restricting normal matrices to have spectrum in a bounded set. It is shown that for a suitable class of potentials the asymptotic density of eigenvalues is uniform with support in the interior domain of a simple smooth curve.
متن کاملEigenvalues of Random Matrices over Finite Fields
We determine the limiting distribution of the number of eigenvalues of a random n×n matrix over Fq as n → ∞. We show that the q → ∞ limit of this distribution is Poisson with mean 1. The main tool is a theorem proved here on asymptotic independence for events defined by conjugacy class data arising from distinct irreducible polynomials. The proof of this theorem uses the cycle index for matrice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2020
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/8074