Random Nonlinear Wave Equations: Propagation of Singularities
نویسندگان
چکیده
منابع مشابه
Wave-breaking and generic singularities of nonlinear hyperbolic equations
Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the ...
متن کاملNonlinear Wave Equations
where := −∂2 t +∆ and u[0] := (u, ut)|t=0. The equation is semi-linear if F is a function only of u, (i.e. F = F (u)), and quasi-linear if F is also a function of the derivatives of u (i.e. F = F (u,Du), where D := (∂t,∇)). The goal is to use energy methods to prove local well-posedness for quasilinear equations with data (f, g) ∈ Hs × Hs−1 for large enough s, and then to derive Strichartz esti...
متن کاملNonlinear Wave Equations
This paper explores the properties of nonlinear wave equations. The proof for the existence and uniqueness of solutions to the 1+1 dimensional linear wave equation with smooth data is given. The D’Alembert formula is then presented in its full generality for the nonlinear equation. Important properties like the domain of dependence and propagation of information are discussed and motivated. The...
متن کاملNonlinear stochastic wave equations
In this paper we study the Cauchy problem for the semilinear stochastic wave equation (@ 2
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1988
ISSN: 0091-1798
DOI: 10.1214/aop/1176991784