Rapid mechanical property prediction and <i>de novo</i> design of three-dimensional spider webs through graph and GraphPerceiver neural networks
نویسندگان
چکیده
Spider webs feature advanced structural performance due to the evolutionary success of over more than 3 × 109 years, including lightweight design and exceptional mechanical properties. are appealing for bio-inspired since web designs serve multiple functions protection prey catching. However, high computational cost limited quantified properties render extensive spider studies challenging in part complexity randomness fiber arrangements 3D webs. Here, we report a method relate graph microstructures effective properties, focusing on strength toughness, upscaling from microscopic mesoscale level. The new framework uses deep neural networks, trained graph-structured Cyrtophora citricola data, order capture complex cross-scale relationships. Three different models developed compared. First, two Graph Neural Network (GNN) models, Convolutional Network, Principal Neighborhood Aggregation method. Second, GraphPerceiver transformer model that is fed similar input data as provided GNN approach but within natural language modeling context using self-attention mechanisms. can achieve model, offering added flexibility building learning diverse hierarchical biological materials. As an application propose optimization tool synthetic used generate synthetic, de novo architectures. Finally, multi-objective enables us discover structures meet specific objectives.
منابع مشابه
Are three-dimensional spider webs defensive adaptations?
Todd A. Blackledge*, Jonathan A. Coddington and Rosemary G. Gillespie University of California – Berkeley, Environmental Science, Policy and Management, Division of Insect Biology, 201 Wellman Hall, Berkeley, CA 94720-3112, USA National Museum of Natural History NHB 105, Smithsonian Institution, Washington, DC, 20560-0105, USA *Correspondence and present address: Department of Entomology, Comst...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولdetermination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولNeural Networks for Rapid Design and Analysis
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic component...
متن کاملOutsourcing through Three-dimensional Competition
In this paper, we study an outsourced supply chain consisting of one buyer and two suppliers in which the buyer outsources manufacturing of a physical product to two competing suppliers. The suppliers compete for the buyers' demands share, and the buyer allocates the demands to the competing suppliers based on three-dimensional allocation functions. We consider two certain types of allocation f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2022
ISSN: ['1089-7550', '0021-8979', '1520-8850']
DOI: https://doi.org/10.1063/5.0097589