Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication
نویسندگان
چکیده
منابع مشابه
Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication
Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity-properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. How...
متن کاملInterspecific comparison of the mechanical properties of mussel byssus.
Byssally tethered mussels are found in a variety of habitats, including rocky intertidal, salt marsh, subtidal, and hydrothermal vents. One key to the survival of mussels in these communities is a secure attachment, achieved by the production of byssal threads. Although many studies have detailed the unique biomechanical properties of byssal threads, only a few prevalent species have been exami...
متن کاملSupplementary Information Programming Biomolecular Self-Assembly Pathways
ion Catalytic geometry
متن کاملMechanical design of mussel byssus: material yield enhances attachment strength
The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive pla...
متن کاملAn Assembly Funnel Makes Biomolecular Complex Assembly Efficient
Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yiel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2017
ISSN: 2041-1723
DOI: 10.1038/ncomms14539