Rational compositum genus for a pure cubic field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebra Seminar Torsion subgroups of rational elliptic curves over the compositum of all cubic fields

Abstract: Let E/Q be an elliptic curve and let Q(3∞) denote the compositum of all cubic extensions of Q. While the group E(3∞) is not finitely generated, one can show that its torsion subgroup is finite; this holds more generally for any Galois extension of Q that contains only finitely many roots of unity. I will describe joint work with Daniels, Lozano-Robledo, and Najman, in which we obtain ...

متن کامل

Torsion subgroups of rational elliptic curves over the compositum of all cubic fields

Let E/Q be an elliptic curve and let Q(3∞) be the compositum of all cubic extensions of Q. In this article we show that the torsion subgroup of E(Q(3∞)) is finite and determine 20 possibilities for its structure, along with a complete description of the Q-isomorphism classes of elliptic curves that fall into each case. We provide rational parameterizations for each of the 16 torsion structures ...

متن کامل

A Relative Integral Basis over Q( √−3) for the Normal Closure of a Pure Cubic Field

Let K be a pure cubic field. Let L be the normal closure of K. A relative integral basis (RIB) for L over Q(√ −3) is given. This RIB simplifies and completes the one given by Haghighi (1986).

متن کامل

On Rational Cubic Residues

In 1958 E. Lehmer found an explicit description of those primes p for which a given prime q is a cubic residue. Her result states that if one writes 4p = L + 27M, then q is a cubic residue if and only if M/L ≡ (t − 1)/(t − 9t) mod q for some integer t. Recently, Z. Sun has stated a similar result for cubic nonresidues which follows from several corollaries appearing in an earlier paper of his. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1977

ISSN: 0022-314X

DOI: 10.1016/0022-314x(77)90029-4