Rational cubic fourfolds in Hassett divisors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Fourfolds and Spaces of Rational Curves

For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5 an odd integer, we show that the space Me parametrizing rational curves of degree e on X is non-uniruled. For e ≥ 6 an even integer, we prove that the generic fiber dimension of the maximally rationally connected fibration of Me is at most one, i.e. passing through a very general point of Me there is at most one rational curve. For e < 5...

متن کامل

Variety of Power Sums and Divisors in the Moduli Space of Cubic Fourfolds

We show that a cubic fourfold F that is apolar to a Veronese surface has the property that its variety of power sums V SP (F, 10) is singular along a K3 surface of genus 20 which is the variety of power sums of a sextic curve. This relates constructions of Mukai and Iliev and Ranestad. We also prove that these cubics form a divisor in the moduli space of cubic fourfolds and that this divisor is...

متن کامل

Twisted Cubics on Cubic Fourfolds

We construct a new twenty-dimensional family of projective eight-dimensional holomorphically symplectic manifolds: the compactified moduli space M3(Y ) of twisted cubics on a smooth cubic fourfold Y that does not contain a plane is shown to be smooth and to admit a contraction M3(Y ) → Z(Y ) to a projective eight-dimensional symplectic manifold Z(Y ). The construction is based on results on lin...

متن کامل

Derived Categories of Cubic Fourfolds

We discuss the structure of the derived category of coherent sheaves on cubic fourfolds of three types: Pfaffian cubics, cubics containing a plane and singular cubics, and discuss its relation to the rationality of these cubics.

متن کامل

Rational curves on holomorphic symplectic fourfolds

One main problem in the theory of irreducible holomorphic symplectic manifolds is the description of the ample cone in the Picard group. The goal of this paper is to formulate explicit Hodge-theoretic criteria for the ampleness of line bundles on certain irreducible holomorphic symplectic manifolds. It is well known that for K3 surfaces the ample cone is governed by (−2)-curves. More generally,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus. Mathématique

سال: 2020

ISSN: 1778-3569

DOI: 10.5802/crmath.4