Rational factorizations of completely positive matrices
نویسندگان
چکیده
منابع مشابه
Computation of Coprime Factorizations of Rational Matrices
We propose a numerically reliable state space algorithm for computing coprime factorizations of rational matrices with factors having poles in a given stability domain. The new algorithm is based on a recursive generalized Schur technique for poles dislocation by means of proportional-derivative state feedback. The proposed algorithm is generally applicable regardless the underlying descriptor ...
متن کاملOn Factorizations of Totally Positive Matrices
Different approaches to the decomposition of a nonsingular totally positive matrix as a product of bidiagonal matrices are studied. Special attention is paid to the interpretation of the factorization in terms of the Neville elimination process of the matrix and in terms of corner cutting algorithms of Computer Aided Geometric Design. Conditions of uniqueness for the decomposition are also given.
متن کاملComputation of Inner-Outer Factorizations of Rational Matrices
In this paper we propose a new numerically reliable computational approach to determine the inner-outer factorization of a rational transfer matrix G of a linear descriptor system. In contrast to existing computationally involved “one-shot” methods which require the solution of Riccati or generalized Riccati equations, the new approach relies on an efficient recursive zeros dislocation techniqu...
متن کاملComputation of Normalized Coprime Factorizations of Rational Matrices
We propose a new computational approach based on descriptor state space algorithms for computing normalized coprime factorizations of arbitrary rational matrices. The proposed approach applies to both continuousand discrete-time rational transfer-function matrices and shows that each rational matrix possesses a normalized coprime factorization with proper factors. The new method is conceptually...
متن کاملComputation of J-inner{outer Factorizations of Rational Matrices
A new numerically reliable computational approach is proposed to compute the facto-rization of a rational transfer function matrix G as a product of a J-lossless factor with a stable, minimum-phase factor. In contrast to existing computationally involved \one-shot" methods which require the solution of Riccati or generalized Riccati equations, the new approach relies on an eecient recursive pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.02.017