Rational torus-equivariant stable homotopy I: Calculating groups of stable maps
نویسندگان
چکیده
منابع مشابه
Equivariant stable homotopy theory
We will study equivariant homotopy theory for G a finite group (although this often easily generalizes to compact Lie groups). The general idea is that if we have two G-spaces X and Y , we’d like to study homotopy classes of equivariant maps between them: [X,Y ] = Map(X,Y )/htpy, where Map(X,Y ) = {f : X → Y |f(gx) = gf(x) for all g ∈ G}. In classical homotopy theory (i.e. when G is the trivial...
متن کاملRational Torus-equivariant Stable Homotopy Ii: the Algebra of Localization and Inflation
In [5] we constructed an abelian category A(G) of sheaves over a category of closed subgroups of the r-torus G and showed it can be used as the basis of a finite Adams spectral sequence for calculating groups of stable G-maps. In the present paper we make an algebraic study of the category A(G). We show how to separate information from isotropy groups with the same identity component, giving an...
متن کاملAn Algebraic Model for Rational S-equivariant Stable Homotopy Theory
Greenlees defined an abelian category A whose derived category is equivalent to the rational S1-equivariant stable homotopy category whose objects represent rational S1equivariant cohomology theories. We show that in fact the model category of differential graded objects in A models the whole rational S1-equivariant stable homotopy theory. That is, we show that there is a Quillen equivalence be...
متن کاملA new family in the stable homotopy groups of spheres
Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...
متن کاملA Survey of Equivariant Stable Homotopy Theory
EQUIVARIANT stable homotopy theory was invented by G. B. Segal in the early 1970s [45]. He was motivated by his work with Atiyah [9] on equivariant K-theory, generalizing an earlier theorem of Atiyah’s on the K-theory of classifying spaces of finite groups to compact Lie groups, and by his work on configuration space and discrete models for iterated loop spaces. His work also suggested to him t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2008
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2007.05.010