Real-coded Genetic Algorithms with Simulated Binary Crossover Operator.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of a Crossover Operator in Binary-coded Genetic Algorithms

Genetic algorithms (GAs) represent a method that mimics the process of natural evolution in effort to find good solutions. In that process, crossover operator plays an important role. To comprehend the genetic algorithms as a whole, it is necessary to understand the role of a crossover operator. Today, there are a number of different crossover operators that can be used in binary-coded GAs. How...

متن کامل

Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems

Real-coded genet ic algorit hms (GAs) do not use any coding of the problem variab les, instead they work dir ectly with the variab les . The main difference in the implementation of real-coded GAs and binary-coded GAs is in their recombination op erators. Alt ho ugh a number of real-cod ed crossover implementations were suggested, most of them were developed wit h intuition and wit hout much an...

متن کامل

Multiple Crossover per Couple with Selection of the Two Crossover Operator for Real-Coded Genetic Algorithms

In this paper, we propose a technique for the application of the crossover operator that generates multiple descendants from two parents and selects the two best offspring to replace the parents in the new population. In crossover operator for real-coded genetic algorithms. In particular, we investigate the influence of the number of generated descendants in this operator, the xperimentation th...

متن کامل

Self-Adaptive Genetic Algorithms with Simulated Binary Crossover

Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (S...

متن کامل

Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover

In the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored only with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using the simulated binary crossover (SBX) operator. The connection between the working of selfadaptive ESs an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer Science and Cybernetics

سال: 2012

ISSN: 1813-9663,1813-9663

DOI: 10.15625/1813-9663/22/2/1402