Real Eigenvalue of a Non-Hermitian Hamiltonian System
نویسندگان
چکیده
منابع مشابه
Time evolution of non-Hermitian Hamiltonian systems
We provide time-evolution operators, gauge transformations and a perturbative treatment for non-Hermitian Hamiltonian systems, which are explicitly timedependent. We determine various new equivalence pairs for Hermitian and non-Hermitian Hamiltonians, which are therefore pseudo-Hermitian and in addition in some cases also invariant under PT-symmetry. In particular, for the harmonic oscillator p...
متن کاملAn Equivalent Hermitian Hamiltonian for the non-Hermitian −x4 Potential
The potential V (x) = −x4, which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and inte...
متن کاملAn extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملA Test Matrix Collection for Non-Hermitian Eigenvalue Problems
The primary purpose of this collection is to provide a testbed for the development of numerical algorithms for solving nonsymmetric eigenvalue problems. In addition, as with many other existing collections of test matrices, our goal includes providing an easy access to \practical" eigenproblems for researchers, educators and students in the community who are interested in the origins of large s...
متن کاملQuasi-Hermitian supersymmetric extensions of a non-Hermitian oscillator Hamiltonian and of its generalizations
A harmonic oscillator Hamiltonian augmented by a non-Hermitian PT -symmetric part and its su(1,1) generalizations, for which a family of positive-definite metric operators was recently constructed, are re-examined in a supersymmetric context. QuasiHermitian supersymmetric extensions of such Hamiltonians are proposed by enlarging su(1,1) to a su(1, 1/1) ∼ osp(2/2,R) superalgebra. This allows the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2012
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2012.310164