Recollements and stratifying ideals
نویسندگان
چکیده
منابع مشابه
Recollements and Singularity Categories
This is a report on my ongoing joint work with Martin Kalck. The recollement generated by a projective module is described. Application to singularity categories is discussed.
متن کاملinjective modules and prime ideals
محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...
15 صفحه اولHighest Weight Categories and Recollements
We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.
متن کاملRecollements of Derived Functor Categories ∗ †
We give an equivalence between the derived category of a locally finitely presented category and the derived category of contravariant functors from its finitely presented subcategory to the category of abelian groups, in the spirit of Krause’s work [H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765–781]. Then we provide a criterion for the existence of r...
متن کاملRecollements of (derived) module categories
Recollements of abelian, resp. triangulated, categories are exact sequences of abelian, resp. triangulated, categories where the inclusion functor as well as the quotient functor have left and right adjoints. They appear quite naturally in various settings and are omnipresent in representation theory. Recollements which all categories involved are module categories (abelian case) or derived cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.04.003