Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
نویسندگان
چکیده
منابع مشابه
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcoge...
متن کاملNanophotonic Circuits Holography
Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging t...
متن کاملCascaded logic gates in nanophotonic plasmon networks
Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in f...
متن کاملPlasmon-Frenkel-exciton in a clustered solid
The standard theory of the Frenkel exciton (a small radius exciton) is applied to a fullerene 2D solid. It is the dipole collective electron excitation of a single cluster which forms the delocalized plasmon-Frenkel-exciton (PFE) in a crystal. The PFE retarded interaction is taken into account. We present transverse PFE-polariton dispersion curves along with the Coulomb problem solution for lon...
متن کاملPlasmon-Exciton Coupling in Symmetry-Broken Nanocavities
We investigate the onset of strong coupling in the temporal dynamics of the exciton population at a single emitter interacting with symmetry-broken plasmonic nanocavities. These structures consist in pairs of metallodielectric elements separated by a nanometric gap, with different degrees of asymmetry imposed on their geometric or material characteristics. In order to describe the emergence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2016
ISSN: 2041-1723
DOI: 10.1038/ncomms13663