Rectifying curves on a smooth surface immersed in the Euclidean space
نویسندگان
چکیده
منابع مشابه
On the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملOn Rectifying Curves as Centrodes and Extremal Curves in the Minkowski 3-space
In this paper, we characterize the spacelike, the timelike and the null rectifying curves in the Minkowski 3-space in terms of centrodes. In particular, we show that the spacelike and timelike rectifying curves are the extremal curves for which the corresponding function takes its extremal value. On the other hand, we also show that the null rectifying curves are not the extremal curves and giv...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملSmooth surfaces in three-dimensional Euclidean space
are locally described by classical differential geometry. In case some spatial direction (e.g., the direction of gravity in the natural landscape or the viewing direction in visual space) assumes a special role, this formalism has to be replaced by the special theory of “topographic surfaces’’ and one speaks of “surface relief ’’ (Liebmann, 1902/1927). Examples include topographic relief and— i...
متن کاملSpecial Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations
In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Pure and Applied Mathematics
سال: 2019
ISSN: 0019-5588,0975-7465
DOI: 10.1007/s13226-019-0361-4