Reducing hyperarithmetic sequences

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Hyperarithmetic Theory

This paper has two objectives: (1) to lift hyperarithmetic theory from co to every co-like A; (2) to prove Louveau's separation theorem for every co-like A. Of course (2) may be regarded as a verification of (1). Two recursion-theoretic ancestors of this paper are [2] by Chang and Moschovakis and [1] by Barwise, Gandy and Moschovakis. In [2], Suslin-Kleene separation was proven for VK, when the...

متن کامل

Up to equimorphism, hyperarithmetic is recursive

Two linear orderings are equimorphic if each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive

متن کامل

Analytic Equivalence Relations Satisfying Hyperarithmetic-is-recursive

We prove, in ZF+Σ2-determinacy, that for any analytic equivalence relation E, the following three statements are equivalent: (1) E does not have perfectly many classes, (2) E satisfies hyperarithmetic-is-recursive on a cone, and (3) relative to some oracle, for every equivalence class [Y ]E we have that a real X computes a member of the equivalence class if and only if ω 1 ≥ ω [Y ] 1 . We also ...

متن کامل

Degrees of Categoricity and the Hyperarithmetic Hierarchy

We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of Fokina, Kalimullin, and R. Miller to show that for every computable ordinal α, 0 is the degree of categoricity of some computable structure A. We show additionally that for α a computable successor ordinal, every degree 2-c.e. in and above 0 is a degree of categoricity. We further prove that every degree of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1975

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-89-1-5-11