Regular elements in complete uniquely complemented lattices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

κ-Complete Uniquely Complemented Lattices

We show that for any infinite cardinal κ , every complete lattice where each element has at most one complement can be regularly embedded into a uniquely complemented κ-complete lattice. This regular embedding preserves all joins and meets, in particular it preserves the bounds of the original lattice. As a corollary, we obtain that every lattice where each element has at most one complement ca...

متن کامل

Balanced D-lattices Are Complemented *

We characterize d-lattices as those bounded lattices in which every maximal filter/ideal is prime, and we show that a d-lattice is complemented iff it is balanced iff all prime filters/ideals are maximal.

متن کامل

On perfect pairs for quadruples in complemented modular lattices and concepts of perfect elements

Gel’fand and Ponomarev [11] introduced the concept of perfect elements and constructed such in the free modular lattice on 4 generators. We present an alternative construction of such elements u (linearly equivalent to theirs) and for each u a direct decomposition u, u of the generating quadruple within the free complemented modular lattice on 4 generators u, u are said to form a perfect pair. ...

متن کامل

Representations of Distributive Semilattices by Dimension Groups, Regular Rings, C*-algebras, and Complemented Modular Lattices

We study the relationships among existing results about representations of distributive semilattices by ideals in dimension groups, von Neu-mann regular rings, C*-algebras, and complemented modular lattices. We prove additional representation results which exhibit further connections with the scattered literature on these diierent topics.

متن کامل

Congruence-preserving Extensions of Finite Lattices to Sectionally Complemented Lattices

In 1962, the authors proved that every finite distributive lattice can be represented as the congruence lattice of a finite sectionally complemented lattice. In 1992, M. Tischendorf verified that every finite lattice has a congruence-preserving extension to an atomistic lattice. In this paper, we bring these two results together. We prove that every finite lattice has a congruence-preserving ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1982

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-9-1-15-19