Regular elements in complete uniquely complemented lattices
نویسندگان
چکیده
منابع مشابه
κ-Complete Uniquely Complemented Lattices
We show that for any infinite cardinal κ , every complete lattice where each element has at most one complement can be regularly embedded into a uniquely complemented κ-complete lattice. This regular embedding preserves all joins and meets, in particular it preserves the bounds of the original lattice. As a corollary, we obtain that every lattice where each element has at most one complement ca...
متن کاملBalanced D-lattices Are Complemented *
We characterize d-lattices as those bounded lattices in which every maximal filter/ideal is prime, and we show that a d-lattice is complemented iff it is balanced iff all prime filters/ideals are maximal.
متن کاملOn perfect pairs for quadruples in complemented modular lattices and concepts of perfect elements
Gel’fand and Ponomarev [11] introduced the concept of perfect elements and constructed such in the free modular lattice on 4 generators. We present an alternative construction of such elements u (linearly equivalent to theirs) and for each u a direct decomposition u, u of the generating quadruple within the free complemented modular lattice on 4 generators u, u are said to form a perfect pair. ...
متن کاملRepresentations of Distributive Semilattices by Dimension Groups, Regular Rings, C*-algebras, and Complemented Modular Lattices
We study the relationships among existing results about representations of distributive semilattices by ideals in dimension groups, von Neu-mann regular rings, C*-algebras, and complemented modular lattices. We prove additional representation results which exhibit further connections with the scattered literature on these diierent topics.
متن کاملCongruence-preserving Extensions of Finite Lattices to Sectionally Complemented Lattices
In 1962, the authors proved that every finite distributive lattice can be represented as the congruence lattice of a finite sectionally complemented lattice. In 1992, M. Tischendorf verified that every finite lattice has a congruence-preserving extension to an atomistic lattice. In this paper, we bring these two results together. We prove that every finite lattice has a congruence-preserving ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1982
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-9-1-15-19