Regularity of maximal functions associated to a critical radius function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressions of Resolvents and Maximal Radius of Regularity

Suppose that λ − T is left-invertible in L(H) for all λ ∈ Ω, where Ω is an open subset of the complex plane. Then an operator-valued function L(λ) is a left resolvent of T in Ω if and only if T has an extension T̃ , the resolvent of which is a dilation of L(λ) of a particular form. Generalized resolvents exist on every open set U , with U included in the regular domain of T . This implies a form...

متن کامل

Maximal Functions Associated to Filtrations

Let T be a bounded linear, or sublinear, operator from L p (Y) to L q (X). To any sequence of subsets Y j of Y is associated a maximal operator T f(x) = sup j jT (f Yj)(x)j. Under the hypotheses that q > p and the sets Y j are nested, we prove that T is also bounded. Classical theorems of Menshov and Zygmund are obtained as corollaries. Multilinear generalizations of this theorem are also estab...

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

Maximal functions associated to smooth curves.

Let t --> gamma(t), 0 </= t </= 1, be a smooth curve in IR(n). Define the maximal function [unk](f) by [unk](f)(x) = sup(0<h</=1) (1/h) (0) (h) f(x - gamma(t)) dt. We state conditions under which parallel[unk](f) parallel(p) </= A(p) parallelf parallel(p), for 1 < p </= infinity.

متن کامل

A Maximal Function Approach to Christoffel Functions and Nevais Operators

Let be a compactly supported positive measure on the real line, with associated Christo¤el functions n (d ; ). Let g be a measurable function that is bounded above and below on supp[ ] by positive constants. We show that n (g d ; ) = n (d ; )! g in measure in fx : 0 (x) > 0g, and consequently in all Lp norms, p < 1. The novelty is that there are no local or global restrictions on . The main ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista de la Unión Matemática Argentina

سال: 2019

ISSN: 1669-9637,0041-6932

DOI: 10.33044/revuma.v60n2a17