Regularization parameter selection for penalized-likelihood list-mode image reconstruction in PET

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularization parameter selection for penalized-maximum likelihood methods in PET

Penalized maximum likelihood methods are commonly used in positron emission tomography (PET). Due to the fact that a Poisson data-noise model is typically assumed, standard regularization parameter choice methods, such as the discrepancy principle or generalized cross validation, can not be directly applied. In recent work of the authors, regularization parameter choice methods for penalized ne...

متن کامل

Penalized-likelihood image reconstruction for digital holography.

Conventional numerical reconstruction for digital holography using a filter applied in the spatial-frequency domain to extract the primary image may yield suboptimal image quality because of the loss in high-frequency components and interference from other undesirable terms of a hologram. We propose a new numerical reconstruction approach using a statistical technique. This approach reconstruct...

متن کامل

Variance Images for Penalized-Likelihood Image Reconstruction

This paper describes new approximations for the variance and covariance of images reconstructed by penalized-likelihood (PL) methods, and presents a simple procedure for computing those approximations. The proposed approximations require less computation than the PL estimates themselves. The method enables the display of variance images, which can provide an indication of uncertainty that may b...

متن کامل

Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation of Misspecified Models

It has been shown that AIC-type criteria are asymptotically efficient selectors of the tuning parameter in non-concave penalized regression methods under the assumption that the population variance is known or that a consistent estimator is available. We relax this assumption to prove that AIC itself is asymptotically efficient and we study its performance in finite samples. In classical regres...

متن کامل

Spatial Resolution in Penalized-Likelihood Image Reconstruction

Spatial Resolution in Penalized-Likelihood Image Reconstruction byJoseph Webster Stayman Chair: Jeffrey A. Fessler Penalized-likelihood methods have been used widely in image reconstruction sincethey can model both the imaging system geometry and measurement noise verywell. However, images reconstructed by conventional penalized-likelihood methodsare subject to anisotropic and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics in Medicine and Biology

سال: 2017

ISSN: 0031-9155,1361-6560

DOI: 10.1088/1361-6560/aa6cdf