Regularized iterative method for ill-posed linear systems based on matrix splitting

نویسندگان

چکیده

In this paper, the concept of matrix splitting is introduced to solve a large sparse ill-posed linear system via Tikhonov?s regularization. regularization process, we convert well-posed system. The convergence such discussed by using different types splittings. Comparison analysis both systems are studied operating certain weak Further, have extended double [Song J. and Song Y, Calcolo 48(3), 245-260, 2011] type II for nonsingular symmetric matrices. addition that, some more comparison results presented with help splittings I II.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

comparison results on the preconditioned mixed-type splitting iterative method for m-matrix linear systems

consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...

متن کامل

comparison results on the preconditioned mixed-type splitting iterative method for m-matrix linear systems

consider the linear system ax=b where the coefficient matrix a is an m-matrix. in the present work, it is proved that the rate of convergence of the gauss-seidel method is faster than the mixed-type splitting and aor (sor) iterative methods for solving m-matrix linear systems. furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a precondition...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

Dynamical systems method for solving linear ill-posed problems

Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning discrepancy principle for choosing regularization parameter are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2104343n