Regularized variational principles for the perturbed Kepler problem
نویسندگان
چکیده
The goal of the paper is to develop a method that will combine use variational techniques with regularization methods in order study existence and multiplicity results for periodic Dirichlet problem associated perturbed Kepler systemx¨=−x|x|3+p(t),x∈Rd, where d≥1, p:R→Rd smooth T-periodic, T>0. critical points action functional proved via non-local change variables inspired by Levi-Civita Kustaanheimo-Stiefel techniques. As an application we prove has infinitely many generalized T-periodic solutions d=2 d=3, without any symmetry assumptions on p.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولPerturbed projection and iterative algorithms for a system of general regularized nonconvex variational inequalities
* Correspondence: [email protected] Department of Mathematics Education and RINS, Gyeongsang National University, Chinju 660-701, Korea Full list of author information is available at the end of the article Abstract The purpose of this paper is to introduce a new system of general nonlinear regularized nonconvex variational inequalities and verify the equivalence between the proposed system and f...
متن کاملNumerical solution of perturbed Kepler problem using a split operator technique
An efficient geometric integrator is proposed for solving the perturbed Kepler motion. This method is stable and accurate over long integration time, which makes it appropriate for treating problems in astrophysics, like solar system simulations, and atomic and molecular physics, like classical simulations of highly excited atoms in external fields. The key idea is to decompose the hamiltonian ...
متن کاملVariational Pseudolikelihood for Regularized Ising Inference
I propose a variational approach to maximum pseudolikelihood inference of the Ising model. The variational algorithm is more computationally efficient, and does a better job predicting out-ofsample correlations than L2 regularized maximum pseudolikelihood inference as well as mean field and isolated spin pair approximations with pseudocount regularization. The key to the approach is a variation...
متن کاملRegularized Mixed Variational-Like Inequalities
We use auxiliary principle technique coupled with iterative regularization method to suggest and analyze some new iterative methods for solving mixed variational-like inequalities. The convergence analysis of these new iterative schemes is considered under some suitable conditions. Some special cases are also discussed. Our method of proofs is very simple as compared with other methods. Our res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107694