Reinforcement Learning Configuration Interaction

نویسندگان

چکیده

Selected configuration interaction (sCI) methods exploit the sparsity of full (FCI) wave function, yielding significant computational savings and function compression without sacrificing accuracy. Despite recent advances in sCI methods, selection important determinants remains an open problem. We explore possibility utilizing reinforcement learning approaches to solve By mapping problem onto a sequential decision-making process, agent learns on-the-fly which include ignore, compressed at near-FCI This method, we call reinforcement-learned interaction, adds another weapon arsenal highlights how can potentially help challenging problems electronic structure theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VCONF: A Reinforcement Learning Approach to Virtual Machine Auto-configuration

Virtual machine (VM) technology enables multiple VMs to share resources on the same host. Resources allocated to the VMs should be re-configured dynamically in response to the change of application demands or resource supply. Because VM execution involves privileged domain and VM monitor, this causes uncertainties in VMs’ resource to performance mapping and poses challenges in online determinat...

متن کامل

A Reinforcement Learning Approach to Online Web System Auto-configuration

In a web system, configuration is crucial to the performance and service availability. It is a challenge, not only because of the dynamics of Internet traffic, but also the dynamic virtual machine environment the system tends to be run on. In this paper, we propose a reinforcement learning approach for autonomic configuration and reconfiguration of multi-tier web systems. It is able to adapt pe...

متن کامل

Reinforcement Learning in Repeated Interaction Games

We study long run implications of reinforcement learning when two players repeatedly interact with one another over multiple rounds to play a finite action game. Within each round, the players play the game many successive times with a fixed set of aspirations used to evaluate payoff experiences as successes or failures. The probability weight on successful actions is increased, while failures ...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Theory and Computation

سال: 2021

ISSN: ['1549-9618', '1549-9626']

DOI: https://doi.org/10.1021/acs.jctc.1c00010