Relations between the Local Chromatic Number and Its Directed Version
نویسندگان
چکیده
منابع مشابه
Relations between the Local Chromatic Number and Its Directed Version
The local chromatic number is a coloring parameter defined as the minimum number of colors that should appear in the most colorful closed neighborhood of a vertex under any proper coloring of the graph. Its directed version is the same when we consider only outneighborhoods in a directed graph. For digraphs with all arcs being present in both directions the two values are obviously equal. Here ...
متن کاملSome relations between rank, chromatic number and energy of graphs
The energy of a graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of G. Let G be a graph of order n and rank(G) be the rank of the adjacency matrix of G. In this paper we characterize all graphs with E(G) = rank(G). Among other results we show that apart from a few families of graphs, E(G) ≥ 2max(χ(G), n − χ(G)), where n is the number of vertices of G, G ...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe Gap between the Chromatic number and the Distinguishing Chromatic Number
The Distinguishing Chromatic Number of a graph G, denoted χD(G), was first defined in [5] as the minimum number of colors needed to properly color G such that no non-trivial automorphism φ of the graph G fixes each color class of G. In this paper, we consider certain ‘natural’ families of bipartite graphs that have reasonably large automorphism groups and we show that in all those cases, the di...
متن کاملOn directed local chromatic number, shift graphs, and Borsuk-like graphs
We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2014
ISSN: 0364-9024
DOI: 10.1002/jgt.21834