Relations between travelling wave solutions of quasilinear parabolic equations
نویسندگان
چکیده
منابع مشابه
Stability of Solutions of Quasilinear Parabolic Equations
Abstract. We bound the difference between solutions u and v of ut = a∆u+ divx f + h and vt = b∆v + divx g + k with initial data φ and ψ, respectively, by ‖u(t, ·)− v(t, ·)‖Lp(E) ≤ AE(t)‖φ−ψ‖ 2ρp L∞(Rn) +B(t)(‖a− b‖∞ + ‖∇x · f − ∇x · g‖∞ + ‖fu − gu‖∞ + ‖h− k‖∞)p |E| ηp . Here all functions a, f , and h are smooth and bounded, and may depend on u, x ∈ R, and t. The functions a and h may in additi...
متن کاملGlobal solutions of quasilinear wave equations
has a global solution for all t ≥ 0 if initial data are sufficiently small. Here the curved wave operator is ̃g = g ∂α∂β, where we used the convention that repeated upper and lower indices are summed over α, β = 0, 1, 2, 3, and ∂0 = ∂/∂t, ∂i = ∂/∂x i, i = 1, 2, 3. We assume that gαβ(φ) are smooth functions of φ such that gαβ(0)= mαβ , where m00=−1, m11= m22= m33=1 and mαβ= 0, if α 6=β. The resul...
متن کاملModulating pulse solutions for quasilinear wave equations
This paper presents an existence proof for symmetric modulating pulse solutions of a quasilinear wave equation. Modulating pulse solutions consist of a pulse-like envelope advancing in the laboratory frame and modulating an underlying wave-train; they are also referred to as ‘moving breathers’ since they are time-periodic in a moving frame of reference. The problem is formulated as an infinite-...
متن کاملQuasilinear Parabolic Functional Evolution Equations
Based on our recent work on quasilinear parabolic evolution equations and maximal regularity we prove a general result for quasilinear evolution equations with memory. It is then applied to the study of quasilinear parabolic differential equations in weak settings. We prove that they generate Lipschitz semiflows on natural history spaces. The new feature is that delays can occur in the highest ...
متن کاملExistence and Uniqueness of Solutions of Quasilinear Wave Equations (ii)
In this work we prove a result concernig the existence and uniqueness of solutions of quasilinear wave equation and we consider also their trivial solutions. We consider the following initial-boundary value problem for the nonlinear wave equation in the form u+ f (u) + g (u̇) = 0 in [0, T ) × Ω (QL) with initial values u0 = u (0, ·) , u1 = u̇ (0, ·) and boundary vale null, that is, u (t, x) = 0 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1985
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1985-0770540-6